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Abstract Although there exists a class of algorithms for
coping with unknown obstacles in mobile robot navigation,
most of them produce rather conservative paths because the
varying density of obstacles is not directly considered in the
real-time motion planning stage. In this paper, we develop
a heuristic obstacle avoidance method in terms of the van-
ishing point and obstacle angle (VP–OA) to compromise
through an adjustable weighting factor between the lane
tracking and the obstacle avoidance performance depend-
ing on the frequency of emerging obstacles. The suggested
algorithm has the advantage of generating smooth local paths
close to a human’s car driving. Comparison simulations and
experiments with other popular algorithms validate the effec-
tiveness of the proposed scheme.

Keywords Obstacle avoidance · Mobile robot navigation ·
Vanishing point · Lane following

1 Introduction

In the global path planning, the autonomous mobile robot
determines an optimal path based on the environmental map
with open spaces and structured obstacles. However, local
path planning is also necessary to cope with unexpected
obstacles using sensory information in real time. When a
mobile robot deviates from the expected global path or expe-
riences an abrupt change of environment, it has to undergo a
time-consuming process to generate a modified path. To help
with this problem, an obstacle avoidance algorithm must be
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considered as a local path planning approach, which is indis-
pensable for the fast and safe navigation of a mobile robot in
uncertain environments.

The previous studies on the obstacle avoidance for a
mobile robot can be largely classified into the directional
approach and the velocity space approach. In the directional
approaches, a best moving direction is determined every
sampling time in terms of the certainty values on the exis-
tence of obstacles for a designated area around the robot.
As some representative examples, the vector field histogram
(VFH) method [1] divides the surroundings of the robot into
small sectors and determines the next moving direction of
the robot based on the obstacle density in the polar his-
togram. The VFH+ version [2] enables smooth motions to
avoid obstacles by considering the possible radii of turns
and the robot dimensions in the configuration space. In suc-
cession, the VFH* method [3,4] was suggested to solve the
problem that some local obstacles lead the robot to dead ends
by incorporating A* algorithm which performs a look-ahead
verification. As another directional approach, the nearness
diagram (ND) algorithm [5] is beneficial in crowded areas,
where the surroundings are divided into five areas by con-
sidering the proximity to obstacles and available spaces, and
the desirable robot motions are determined for each region.

As a different framework for obstacle avoidance in the
velocity space, the dynamic window approach (DWA) [6]
establishes a search space which consists of the admissible
velocities for the robot under dynamic constraints, where the
optimal velocities to avoid obstacles are found within the
dynamic window. However, sometimes it may suffer from
the local minimum problem that the robot cannot find a mov-
ing direction at dead ends, which was investigated in the
global DWA [7] in conjunction with an independent nav-
igation function. The convergence of the DWA algorithm
has been improved by applying the model predictive con-
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trol technique and using the control Lyapunov function [8].
Also, the DWA has been integrated with the D* search algo-
rithm for handling densely populated moving obstacles [9]
and extended to a 3D planning for arbitrarily shaped mobile
robots [10]. Similarly, the curvature velocity method in [11]
also seeks to find optimal velocities to avoid obstacles in
the velocity space. Also, a few combined algorithms for the
directional approach and the velocity space approaches were
developed in [12,13].

In exploring uncertain environments, mobile robots usu-
ally experience the change of obstacle environment. Hence,
if we can take the varying density of obstacles into consid-
eration in the motion planning stage, a more natural path
such as mimicking human’s car driving might be generated.
For example, when there are no obstacles in the course of
navigation, it is wise to choose a minimum distance or a min-
imum time trajectory. When the obstacles are rarely found,
it is reasonable to put more emphasis on the target tracking
performance rather than on the obstacle avoidance to keep
the velocity decrease of the robot as small as possible. On
the contrary, in congested areas with emerging obstacles, the
main concern must be how to arrive at the final goal safely
by choosing a conservative path to be certain to avoid colli-
sionswith obstacles.However,most of the currently available
algorithms do not explicitly consider the real-time change of
the obstacle population in generating the collision avoidance
motion of mobile robots. Although some of them choose the
movable and unmovable directions of the robot by control-
ling the threshold for the certainty value of obstacle existence
[1–4] or the coefficients involved in the objective functions
[6–9], those parameters are fixed regardless of the obstacle
distribution in reality.

To address this issue, this paper investigates how to accom-
plish a dexterous driving of a mobile robot by reflecting the
obstacle density in the collision avoidance problem. First,
we define a vanishing point and obstacle angle (VP–OA)
in Sect. 2 as a heuristic measure to compromise between the
driving and obstacle avoidance performances. Then, the VP–
OA-based obstacle avoidance scheme is proposed in Sect. 3,
where the frequency of obstacles in a designated search area
is considered through a weighting factor which is adjustable
in real time. Through the comparison simulations with rep-
resentative algorithms in Sect. 4 and the experimental results
in Sect. 5, it is shown that the suggested obstacle avoidance
algorithm is very efficient and powerful. Finally, the conclu-
sion is drawn in Sect. 6.

2 Vanishing point and obstacle angle

2.1 Lane tracking using vanishing point angle

The vanishing point (VP) is defined as a single point where
the two straight lines in a 3D space along the boundaries of a

Vanishing point

(a) Straight lane 

Vanishing point

VP line

(b) Curved lane 

Fig. 1 Extraction of vanishing points using boundary and lane detec-
tion. a Straight lane, b curved lane

lane meet when they are projected onto a 2D image accord-
ing to the sense of perspective. For example, the boundaries
at both sides of the indoor passage in Fig. 1a are paral-
lel in reality, but the extracted and extended lines from the
captured image gather at one point. In a curved lane like
Fig. 1b, the vanishing point can be readily determined as far
as the two tangential lines at both sides are given through the
image processing. The vanishing point technique was popu-
larly utilized inmany applications concernedwith themobile
robot navigation including camera calibration [14], vision-
based attitude estimation [15], obstacle detection [16], and
lane tracking problems [17]. Tracking the vanishing points
enables themobile robot to explore an unknown environment
along the boundaries of indoor passages or outdoor roads.

As schematically described in Fig. 2, the current pose of
the robot with respect to a specific lane can be represented
by the VP line and VP angle. If the robot approaches one
side of a lane, the central axis of the image captured from
the robot camera is coincident with the moving direction
of the robot. The virtual VP line connects the robot to the
vanishing point, where the angle between the central axis
and the VP line is defined as the VP angle. As far as the
moving direction of the robot is not parallel to the local lanes
and is not located at the exact center between the left and
right boundaries of the lanes, the VP angle always happens
with nonzero values. If the wheel velocities of the robot are
controlled to make the VP angle converge to zero, the robot
is naturally driven to the central part of the passage by the
steering action. Actually, it is the same as reducing the VP
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Fig. 2 Definition of the vanishing point angle (VP angle)
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Fig. 3 Image processing procedure to find the vanishing points

deviation denoted in Fig. 2 to zero as investigated in [18].
The image processing procedure to find the vanishing points
is denoted in Fig. 3, where the virtual lines at both boundaries
are updated every sampling time and theRANSACalgorithm
[19] can be applied to recognize the final boundaries from a
lot of candidates of continuous lines.

2.2 Obstacle detection area

For computational efficiency, it is necessary to restrict the
area to search for obstacles considering the current speed of
the robot. In Fig. 4, we define the sectors beginning at the dis-
tance sensor as the obstacle detection area (ODA), where the
radius is varied in real time as a function of the current speed:

R =
(
Rmax − Rmin

vmax − vmin

)
(v − vmax) + Rmax (1)

with the pre-specified maximum and minimum radii (Rmax,

Rmin) and the velocities (vmax, vmin). In the where the ODA
area has a constant value of A, the central angle of ODA can
be determined as

A = θODAR
2/2 → θODA = 2A/R2 (2)

Low speed ODA

High speed ODA

Emergency Stop 
Range (ESR)

ODAθ

R

Fig. 4 Fan-shaped obstacle detection area (ODA)
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Fig. 5 Definition of obstacle angle (OT angle)

Consequently, the ODA at low speeds has a large central
angle but a small radius to detect a wide range of surround-
ings. At high speeds, however, it has a small central angle
but a large radius to detect distant objects in advance. If the
ODA area is too large, it will increase the computation time
accordingly and it may invoke excessive steeringmotions for
any possible collisions. On the contrary, if the ODA is too
small, it is hard to cope with abruptly emerging obstacles. It
is also necessary to consider the robot’s dimensions in estab-
lishing the ODA. For example, the width of the ODAmust be
at least larger than the distance between the wheels. In fact, a
fundamental approach for considering the dimensional effect
of the robot in the collision avoidance problems is to extend
the dimension of obstacles for any pose of the robot in the
configuration space as remarked in [3,9].

2.3 Collision avoidance using obstacle angle

As shown in Fig. 5, when the obstacles are detected by the
distance sensor such as the laser range finder or ultrasonic
sensor, the outer contour points of the obstacles in a specific
region of ODA can be saved as many points as the sensor
resolution. Here, we define the obstacle angle (OA) as the
angle between the horizontal line of the robot and the mini-
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mum distance vector to the contour points. As long as there
are no obstacles inside the ODA, the obstacle angle always
remains zero. When some objects are detected in the ODA,
the minimum distance is compared with the emergency stop
range (ESR) denoted in Fig. 4 to judge whether to conduct
collision avoidance motion or not. If the minimum distance
is smaller than a specified radius of ESR, the mobile robot
must make an emergency stop for the safety. Otherwise, it is
directed to avoid obstacles by regulating the obstacle angle
to zero, which is detailed in the following section.

3 VP–OA-based obstacle avoidance

3.1 Collision avoidance motion planning

As denoted in Fig. 6, the VP angle has a positive value in
the clockwise direction with respect to the vertical axis of
the robot and negative in the counterclockwise direction.
Similarly, the direction of the obstacle angle is defined with
respect to the horizontal axis. At a specific sampling time,
if the minimum distance to obstacles exists on the right side
from the vertical axis, the robot will steer to the left to follow
a collision-free path until the obstacle angle reduces to zero.
In the same way, if the minimum distance occurs at the left
obstacle, the robot will move to the right.

In the lane tracking navigation, the VP tracking perfor-
mance of a mobile robot is dependent upon how quickly the
VP angle recovers to zero. In Fig. 6, if the VP line is toward
the right side, the robot turns to the right and if it heads for the
left side, the robot turns to the left. As theVP angle converges
to zero, the robot transfers to the central part of the passage.
To make the mobile robot keep lane tracking while avoiding
obstacles, the VP angle and the obstacle angle must converge
to zero simultaneously. However, in the course of traveling,

minl
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Right
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Left
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Horizontal 
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Fig. 6 Positive and negative directions of VP angle and obstacle angle

the convergence of the two angleswill conflict frequently and
they need to be compromised by following a certain rule.

First, we define the steering angle of the robot as the sum
of the VP angle and the weighted obstacle angle:

φ = θVP + kOTθOT (3)

where the weighting factor is to penalize the lane tracking
performance to guarantee a safe collision avoidance. Then,
in the case of a differential type mobile robot, the velocity
commands of the left and right wheels can be determined by

vL = Vref + (KPφ + KDφ̇), vR = Vref − (KPφ + KDφ̇)

(4)

to regulate the steering angle to zero as the robot moves for-
ward, where Vref is the reference velocity and (KP, KD) are
the proportional and derivative control gains. The forward
velocity and the steering rate of the robot are constrained by
the relationships:

v = vL + vR

2
, ω = vR − vL

d
(5)

with d the distance between the wheels. Hence, the steering
direction of the robot will be alternated along with the sign
change of the steering angle.

When the VP–OA-based navigation algorithm is applied
to a mobile robot, it is expected to trace the collision-free
path described in Fig. 7. At each traveling stage, the VP and
obstacle angles are determined depending on the pose and
velocity of the robot and the distance to the obstacles. First,
in the case where no obstacles exist in the ODA, only the
VP angle contributes to the required steering angle in (3).
In the second stage where the robot detects an obstacle in
the ODA, the obstacle angle jumps to a certain value and
gradually decreases until the obstacle disappears from the
ODA. Finally, as the VP angle decreases to zero, the robot
returns to the central part of the way and naturally recovers
straight driving along the lanes. For the obstacles and bound-
aries in Fig. 7, they can be thought of as enlarged ones in
the configuration space (or C-space) [3,9], where the robot’s
dimensions are reflected into the individual obstacles and the
robot is transformed into a single point in the space.

3.2 Generation of humanlike driving motion

Considering the dynamic characteristics and the limit of actu-
ation power, the steering rate and the forward velocity of the
mobile robot are required to be limited to certain maximum
values. To achieve smooth turns and prevent turnovers, it is
also necessary to adjust the velocity reference in the control
loop depending on the current steering rate. For example, we
have
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Fig. 7 Collision-free local path generation by theVP–OA-basedobsta-
cle avoidance algorithm

Vref =
{

(Vmax − Vmin)(1 − |ω|
ωmax

) + Vmin (|ω| < ωmax)

Vmin (|ω| ≥ ωmax)

(6)

where (Vmax, ωmax) are the pre-specified maximum values
for the forward velocity and steering rate of the robot. When
the steering angle gets large due to a sudden appearance of
an obstacle or a lane change, it results in a large steering rate
in the robot motion. Then, the reference velocity will be less-
ened as much. Only when the robot is running parallel to the
straight lane with no steering angle does the reference veloc-
ity maintain the same value as the pre-specified maximum
value.

This approach is similar to human car drivingwhich slows
down the speed when entering curves and speeds up when
exiting them. As we instinctively reduce the car speed in
heavily congested areas with many obstacles, it is necessary
for the mobile robot to slow down when it meets the same
situation for safe collision avoidance. It can be achieved by
allowing the weighting factor for the obstacle angle in (3) to
be adjustable in real time. For instance, we have

kOT =
⎧⎨
⎩

(
N

Nmax

)
×

(
R

lmin

)
if obstacles exist in ODA

0 if no obstacles in ODA
(7)

where R is the radius of the ODA in Fig. 4 at the current
state, Nmax is the maximum number of points along the arc
of theODAwhich is detectable according to the distance sen-
sor resolution, and N the number of points actually detected
along the obstacle contours in ODA. As the obstacles that
occupy the ODA gets larger and the minimum distance to
the obstacles gets smaller, the steering angle gets larger due
to the increased weighting factor. Then, a higher steering rate
will be assigned to the robot according to (4). Successively,
the reference velocity for the robot gets decreased by the rule
in (6).

With a large weighting factor, it bothers the lane fol-
lowing performance of the robot because it decreases the
forward velocity and sometimes generates excessive steer-
ing motions. Roughly speaking, when 0 < kOT < 1 with
rare obstacles, the VP angle dominates the steering angle
and the robot is more faithful to the lane following behavior
rather than obstacle avoidance. However, when kOT > 1 in
populated obstacles, the obstacle angle influences the steer-
ing angle more than the VP angle and the main priority in
the robot motion is to escape from that region safely without
any collision. Actually, it is a great advantage of the VP–
OA-based approach that a mobile robot is able to cope with
the variation of the obstacle density through the auto-tuned
weighting parameter.

4 Performance simulation

4.1 VFH, DWA, and VP–OA approach

Among the existing obstacle avoidance methods for mobile
robots, two representative ones are the class of VFH meth-
ods to find a moving direction in the Cartesian space (or
configuration space) and the class of DWAs formulated in the
velocity space. In the VFHmethods [1–4], the obstacle infor-
mation in the two-dimensional histogram is transformed into
a one-dimensional polar histogram, which divides the entire
360 degrees around the robot into small sectors and stores the
polar obstacle density (POD) based on the certainty value.
As described in Fig. 8, the sectors are clustered into the val-
leys of movable (bright) and unmovable groups (dark) by
applying a threshold to the POD. Among the valleys beyond
a certain width considering robot dimension, the nearest path
to the goal is selected and the corresponding steering angle
is determined. The performance of the VFHmethods greatly
depends on the number of sectors and the pre-determined
threshold value [20].
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In the class ofDWAalgorithms [6–10], a dynamicwindow
shown in Fig. 9 is created every sampling time as a certain
region in the velocity space which can be entered into at the
next sampling time by considering the current velocity and
steering rate of the robot and the torque limit of wheel actua-
tors. Then, among the velocity sets in the dynamic window, it
determines a pair of forward velocity and steering rate (v, ω)

which maximizes an objective function in the form of

G(v, ω) = α · (1 − heading(v, ω)) + β · distance(v, ω)

+ γ · velocity(v, ω) (8)

where the sub-functions representing the steering angle, dis-
tance to obstacles, and forward velocity, respectively, are
normalized ones. The DWAs are advantageous for imple-
menting fast and smoothnavigationof amobile robot because
of its small computing power requirement.

As the threshold value to separate the movable areas gets
smaller in the VFH methods, the resulting local paths will
becomemore conservative for safe collision avoidance. Sim-
ilarly, the coefficients of the objective functions in the DWA
methods determine the configuration of the steering motion.
Since the thresholds in the VFH methods and the weight-
ing coefficients in the DWAs usually have fixed values, it is
difficult to cover various environments with varying obstacle

populations. On the contrary, the VP–OA approach proposed
in this paper enables the mobile robot to conduct humanlike
driving motions by coordinating the lane following perfor-
mance and the obstacle avoidance performance through the
flexible weighting factor.

4.2 Comparative simulation

The developed VP–OA algorithm is compared with the VFH
andDWAmethods throughnumerical simulations. In Fig. 10,
the cylindrical obstacles with 1 m diameter are randomly
distributed along a straight route 20 m long and 8 m wide.
The reference velocity of the robot for the three algorithms
commonly varies between themaximum0.5m/s and themin-
imum 0.1 m/s.

In applying the VFH algorithm, the certainty grid around
the robot has 33 by 33 cells where the magnitude of each
cell is 10 by 10 cm, the POD sectors angle is one degree,
and the other parameters follow the values as were given in
[1], which include the smoothing function parameter l = 25,
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Fig. 10 Comparison of obstacle avoidance trajectories (simulation)

Table 1 Performance comparison (simulation)

Elapse
time (s)

Traveling
distance (m)

Minimum
distance (m)

VP–OA 48.1 20.55 0.49

VFH 52.7 21.46 0.53

DWA 53.5 21.69 0.52
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the steering control parameter smax = 90, and the allowable
angular velocity αmax = 90 deg/s. For the DWA algorithm,
the weighting parameters in (8) were determined as α =
0.2, β = 2, γ = 0.2 by following the suggestion in [6].

As a result, the obstacle avoidance paths for the three algo-
rithms show similar patterns. However, it can be confirmed
that the VP–OA approach produces smoother local paths due
to the flexible weighting factor and it considerably reduces
the total elapse time, traveling distance, and the minimum
distance to obstacles, as is shown in Table 1. As indicated in
Fig. 11, the VP angle happens and converges to zero as the
robot is tracking the vanishing point, and the obstacle angle
jumps to peak values when the obstacles are detected in ODA
and soon disappears as soon as the robot escapes from them.
As well, the weighting factor varies depending on the obsta-
cle density in local areas and it becomes zero when there are
no obstacles in ODA, which makes the distinctive difference
of the VP–OA algorithm from the other ones.

5 Experiment

To validate the VP–OA obstacle avoidance algorithm, it has
been applied to a differential type mobile robot with two
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active wheels, which is equipped with a webcam for lane
following navigation and a laser range finder for obstacle
detection. The mobile robot navigation was performed in an
indoor passage about 70 m long and 2.5 m wide, where the
obstacles were distributed as shown in Figs. 12 and 13. For
the initialization of the algorithm, the maximum velocity of
themobile robotwas fixed as 1m/s and theminimumvelocity
as 0.1 m/s and also the initial radius of ODA as 1.3 m.

The trajectories in Figs. 12, 13, 14 demonstrate the agile
motion of the mobile robot to avoid obstacles while track-
ing the lane, specifically in the last section of high obstacle
density as shown in Fig. 13. In Fig. 12, the vanishing points
are successfully generated according the image processing
procedure suggested in Fig. 3. In Fig. 14, it is clear that the
weighting factor has higher values as the obstacles become
more congested, where in the middle section with no obsta-
cles, the VP angle stays near zero, but the obstacle angle
shows a little chattering because of the effect of the wall. As
the steering rate increases due to the high VP and obstacle
angles, the forward velocity is accordingly lessened by fol-
lowing the rule of (6) to achieve a humanlike driving motion,
whichmakes themagnitudes of theODA radius and theODA
angle alternated according to (1) and (2). Reducing the ODA
radius but increasing the angle is similar to decreasing the
visual point but increasing the field of view to turn to the left

or to the right when an obstacle appears in front of a human
driver.

In an open space without any clear boundaries, it may not
be adequate for a mobile robot to perform a lane following
navigation. However, if a waypoint or a final goal are given
through the global path planning, they can be regarded as the
vanishing points to follow in the VP–OA algorithm. Even
though the VP angle is zero because no vanishing points
are defined, there is no problem to generate local paths for
obstacle avoidance according to the steering angle in (3).

6 Conclusion

In this paper, we have suggested an efficient obstacle avoid-
ance algorithmheuristically developed based on the notion of
vanishing point and obstacle angle. Specifically, it is useful to
accomplish a humanlike driving motion of a mobile robot in
the lane following navigation, where the obstacle avoidance
and lane tracking performance can be naturally compromised
through the weighting parameter depending on the varying
obstacle density. The proposed VP–OA obstacle avoidance
scheme can be readily combined with a global path plan-
ning to have an optimal path. Finally, a modified version of
the VP–OA algorithm to escape from the local minimum
problem at dead ends can be implemented by providing a
prediction function for global search.
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